Draw the Binary Tree Representation of the Following Arithmetic Expression
The expression tree is a binary tree in which each internal node corresponds to the operator and each leaf node corresponds to the operand so for example expression tree for 3 + ((5+9)*2) would be:
Inorder traversal of expression tree produces infix version of given postfix expression (same with postorder traversal it gives postfix expression)
Evaluating the expression represented by an expression tree:
Let t be the expression tree If t is not null then If t.value is operand then Return t.value A = solve(t.left) B = solve(t.right) // calculate applies operator 't.value' // on A and B, and returns value Return calculate(A, B, t.value)
Construction of Expression Tree:
Now For constructing an expression tree we use a stack. We loop through input expression and do the following for every character.
- If a character is an operand push that into the stack
- If a character is an operator pop two values from the stack make them its child and push the current node again.
In the end, the only element of the stack will be the root of an expression tree.
Examples:
Input: A B C*+ D/ Output: A + B * C / D
The first three symbols are operands, so create tree nodes and push pointers to them onto a stack as shown below.
In the Next step, an operator '*' will going read, so two pointers to trees are popped, a new tree is formed and a pointer to it is pushed onto the stack
In the Next step, an operator '+' will read, so two pointers to trees are popped, a new tree is formed and a pointer to it is pushed onto the stack.
A3f.png
Similarly, as above cases first we push 'D' into the stack and then in the last step first, will read '/' and then as previous step topmost element will pop out and then will be right subtree of root '/' and other nodes will be right subtree.
Final Constructed Expression Tree is:
A4f.png
Below is the code of the above approach:
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using
namespace
std;
class
node {
public
:
char
value;
node* left;
node* right;
node* next = NULL;
node(
char
c)
{
this
->value = c;
left = NULL;
right = NULL;
}
node()
{
left = NULL;
right = NULL;
}
friend
class
Stack;
friend
class
expression_tree;
};
class
Stack {
node* head = NULL;
public
:
void
push(node*);
node* pop();
friend
class
expression_tree;
};
class
expression_tree {
public
:
void
inorder(node* x)
{
if
(x == NULL)
return
;
else
{
inorder(x->left);
cout << x->value <<
" "
;
inorder(x->right);
}
}
};
void
Stack::push(node* x)
{
if
(head == NULL) {
head = x;
}
else
{
x->next = head;
head = x;
}
}
node* Stack::pop()
{
node* p = head;
head = head->next;
return
p;
}
int
main()
{
string s =
"ABC*+D/"
;
Stack e;
expression_tree a;
node *x, *y, *z;
int
l = s.length();
for
(
int
i = 0; i < l; i++) {
if
(s[i] ==
'+'
|| s[i] ==
'-'
|| s[i] ==
'*'
|| s[i] ==
'/'
|| s[i] ==
'^'
) {
z =
new
node(s[i]);
x = e.pop();
y = e.pop();
z->left = y;
z->right = x;
e.push(z);
}
else
{
z =
new
node(s[i]);
e.push(z);
}
}
cout <<
" The Inorder Traversal of Expression Tree: "
;
a.inorder(z);
return
0;
}
C
#include <stdio.h>
#include <stdlib.h>
struct
node {
char
data;
struct
node* left;
struct
node* right;
struct
node* next;
};
struct
node *head=NULL;
struct
node* newNode(
char
data)
{
struct
node* node
= (
struct
node*)
malloc
(
sizeof
(
struct
node));
node->data = data;
node->left = NULL;
node->right = NULL;
node->next = NULL;
return
(node);
}
void
printInorder(
struct
node* node)
{
if
(node == NULL)
return
;
else
{
printInorder(node->left);
printf
(
"%c "
, node->data);
printInorder(node->right);
}
}
void
push(
struct
node* x)
{
if
(head==NULL)
head = x;
else
{
(x)->next = head;
head = x;
}
}
struct
node* pop()
{
struct
node* p = head;
head = head->next;
return
p;
}
int
main()
{
char
s[] = {
'A'
,
'B'
,
'C'
,
'*'
,
'+'
,
'D'
,
'/'
};
int
l =
sizeof
(s) /
sizeof
(s[0]) ;
struct
node *x, *y, *z;
for
(
int
i = 0; i < l; i++) {
if
(s[i] ==
'+'
|| s[i] ==
'-'
|| s[i] ==
'*'
|| s[i] ==
'/'
|| s[i] ==
'^'
) {
z = newNode(s[i]);
x = pop();
y = pop();
z->left = y;
z->right = x;
push(z);
}
else
{
z = newNode(s[i]);
push(z);
}
}
printf
(
" The Inorder Traversal of Expression Tree: "
);
printInorder(z);
return
0;
}
Java
import
java.util.Stack;
class
Node{
char
data;
Node left,right;
public
Node(
char
data){
this
.data = data;
left = right =
null
;
}
}
public
class
Main {
public
static
boolean
isOperator(
char
ch){
if
(ch==
'+'
|| ch==
'-'
|| ch==
'*'
|| ch==
'/'
|| ch==
'^'
){
return
true
;
}
return
false
;
}
public
static
Node expressionTree(String postfix){
Stack<Node> st =
new
Stack<Node>();
Node t1,t2,temp;
for
(
int
i=
0
;i<postfix.length();i++){
if
(!isOperator(postfix.charAt(i))){
temp =
new
Node(postfix.charAt(i));
st.push(temp);
}
else
{
temp =
new
Node(postfix.charAt(i));
t1 = st.pop();
t2 = st.pop();
temp.left = t2;
temp.right = t1;
st.push(temp);
}
}
temp = st.pop();
return
temp;
}
public
static
void
inorder(Node root){
if
(root==
null
)
return
;
inorder(root.left);
System.out.print(root.data);
inorder(root.right);
}
public
static
void
main(String[] args) {
String postfix =
"ABC*+D/"
;
Node r = expressionTree(postfix);
inorder(r);
}
}
C#
using
System;
using
System.Collections.Generic;
class
Node{
public
char
data;
public
Node left,right;
public
Node(
char
data){
this
.data = data;
left = right =
null
;
}
}
public
class
GFG {
public
static
bool
isOperator(
char
ch){
if
(ch==
'+'
|| ch==
'-'
|| ch==
'*'
|| ch==
'/'
|| ch==
'^'
){
return
true
;
}
return
false
;
}
static
Node expressionTree(String postfix){
Stack<Node> st =
new
Stack<Node>();
Node t1, t2, temp;
for
(
int
i = 0; i < postfix.Length; i++)
{
if
(!isOperator(postfix[i])){
temp =
new
Node(postfix[i]);
st.Push(temp);
}
else
{
temp =
new
Node(postfix[i]);
t1 = st.Pop();
t2 = st.Pop();
temp.left = t2;
temp.right = t1;
st.Push(temp);
}
}
temp = st.Pop();
return
temp;
}
static
void
inorder(Node root){
if
(root ==
null
)
return
;
inorder(root.left);
Console.Write(root.data);
inorder(root.right);
}
public
static
void
Main(String[] args)
{
String postfix =
"ABC*+D/"
;
Node r = expressionTree(postfix);
inorder(r);
}
}
Output:
A+B*C/D
Source: https://www.geeksforgeeks.org/expression-tree/
0 Response to "Draw the Binary Tree Representation of the Following Arithmetic Expression"
Post a Comment